Recent technical advancements enable omics-based biological study of molecules with very high throughput and low cost, such as genomic, proteomic, and microbionics'. To overcome this drawback, Omics Data Classification using Constitutive Artificial Neural Network Optimized with Single Candidate Optimizer (ODC-ZOA-CANN-SCO) is proposed in this manuscript. The input data is pre-processing by using Adaptive variational Bayesian filtering (AVBF) to replace missing values. The pre-processing data is fed to Zebra Optimization Algorithm (ZOA) for dimensionality reduction. Then, the Constitutive Artificial Neural Network (CANN) is employed to classify omics data. The weight parameter is optimized by Single Candidate Optimizer (SCO). The proposed ODC-ZOA-CANN-SCO method attains 25.36%, 21.04%, 22.18%, 26.90%, and 28.12% higher accuracy when analysed to the existing methods like multi-omics data integration utilizing adaptive graph learning and attention mode for patient categorization with biomarker identification (MOD-AGL-AM-PABI), deep learning method depending upon multi-omics data integration to create risk stratification prediction mode for skin cutaneous melanoma (DL-MODI-RSP-SCM), Deep belief network-base model for identifying Alzheimer's disease utilizing multi-omics data (DDN-DAD-MOD), hybrid cancer prediction depending upon multi-omics data and reinforcement learning state action reward state action (HCP-MOD-RL-SARSA), machine learning basis method under omics data including biological knowledge database for cancer clinical endpoint prediction (ML-ODBKD-CCEP) methods, respectively.