Self-Sorting Governed by Chelate Cooperativity.
David Serrano-MolinaCarlos Montoro-GarcíaMaría J MayoralAlberto de JuanDavid González-RodríguezPublished in: Journal of the American Chemical Society (2022)
Self-sorting phenomena are the basis of manifold relevant (bio)chemical processes where a set of molecules is able to interact with no interference from other sets and are ruled by a number of codes that are programmed in molecular structures. In this work, we study, the relevance of chelate cooperativity as a code for achieving high self-sorting fidelities. In particular, we establish qualitative and quantitative relationships between the cooperativity of a cyclic system and the self-sorting fidelity when combined with other molecules that share identical geometry and/or binding interactions. We demonstrate that only systems displaying sufficiently strong chelate cooperativity can achieve quantitative narcissistic self-sorting fidelities either by dictating the distribution of cyclic species in complex mixtures or by ruling the competition between the intra- and intermolecular versions of a noncovalent interaction.