Login / Signup

Determination of Collision Cross Sections Using a Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometer.

Eric T DziekonskiJoshua T JohnsonKenneth W LeeScott A McLuckey
Published in: Journal of the American Society for Mass Spectrometry (2017)
Collision cross sections (CCSs) were determined from the frequency-domain linewidths in a Fourier transform electrostatic linear ion trap. With use of an ultrahigh-vacuum precision leak valve and nitrogen gas, transients were recorded as the background pressure in the mass analyzer chamber was varied between 4× 10-8 and 7 × 10-7 Torr. The energetic hard-sphere ion-neutral collision model, described by Xu and coworkers, was used to relate the recorded image charge to the CCS of the molecule. In lieu of our monoisotopically isolating the mass of interest, the known relative isotopic abundances were programmed into the Lorentzian fitting algorithm such that the linewidth was extracted from a sum of Lorentzians. Although this works only if the isotopic distribution is known a priori, it prevents ion loss, preserves the high signal-to-noise ratio, and minimizes the experimental error on our homebuilt instrument. Six tetraalkylammonium cations were used to correlate the CCS measured in the electrostatic linear ion trap with that measured by drift-tube ion mobility spectrometry, for which there was an excellent correlation (R 2 ≈ 0.9999). Although the absolute CCSs derived with our method differ from those reported, the extracted linear correlation can be used to correct the raw CCS. With use of [angiotensin II]2+ and reserpine, the corrected CCSs (334.9 ± 2.1 and 250.1 ± 0.5, respectively) were in good agreement with the reported ion mobility spectrometry CCSs (335 and 254.3, respectively). With sufficient signal-to-noise ratio, the CCSs determined are reproducible to within a fraction of a percent, comparable to the uncertainties reported on dedicated ion mobility instruments. Graphical Abstract ᅟ.
Keyphrases