Study of Substituted Phenethylamine Fragmentation Induced by Electrospray Ionization Mass Spectrometry and Its Application for Highly Sensitive Analysis of Neurotransmitters in Biological Samples.
Daiki AsakawaEiji SugiyamaHajime MizunoKenichiro TodorokiPublished in: Journal of the American Society for Mass Spectrometry (2021)
Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) equipped with electrospray ionization (ESI) is widely employed for metabolite analysis, substituted phenethylamines commonly undergo fragmentation during ESI in-source collision-induced dissociation (CID). Unexpected fragmentation hampers not only unambiguous identification but also accurate metabolite quantification. ESI in-source CID induces N-Cα bond dissociation in substituted phenethylamines lacking a β-hydroxy group to produce fragment ions with a spiro[2.5]octadienylium motif. In contrast, phenethylamines with a β-hydroxy group generate substituted 2-phenylaziridium through ESI in-source CID-induced H2O loss. The fragment ion yield produced by ESI in-source CID can be estimated by the dissociation rate constant and internal energy of the analyte ion, determined by employing density functional theory calculations and the survival yield method using a thermometer ion, respectively. Fragmentation is strongly enhanced by the presence of an β-hydroxy group, whereas N-methylation suppresses fragmentation. In particular, octopamine and noradrenaline, which contain an β-hydroxy and primary amine groups, produce more intense fragment ion signals than protonated molecules. Regarding the quantitative analysis of phenethylamines present in the mouse brain, the noradrenaline fragment ion used as the precursor in multiple reaction monitoring (MRM) provided a higher signal-to-noise ratio in the resulting spectra than protonated noradrenaline. The present method allows for the quantitative analysis of substituted phenethylamines with high sensitivity.
Keyphrases
- ms ms
- density functional theory
- liquid chromatography tandem mass spectrometry
- molecular docking
- mass spectrometry
- high resolution
- molecular dynamics
- high glucose
- electron transfer
- simultaneous determination
- magnetic resonance
- air pollution
- molecular dynamics simulations
- liquid chromatography
- high performance liquid chromatography
- computed tomography
- solid phase extraction
- endothelial cells
- monte carlo
- quantum dots
- genome wide
- contrast enhanced
- single molecule