Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency.
Dengrong SunHyune-Jea LeePublished in: ACS applied materials & interfaces (2020)
Converting solar energy to chemical energy via photocatalysis has attracted increasing interest. Simultaneously realizing efficient charge separation and fast reactant/product diffusion/transport is highly significant for improving the photocatalytic activity, which however is difficult. Herein, we reported an interfacially confined strategy by constructing interfacial pores as nanoreactors between metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) with controlled surface wettability for efficient photocatalysis. In the sandwich Ti-MOFs@Pt@DM-LZU1, interfacial pores formed between Ti-MOF@Pt and DM-LZU1, in which Pt nanoparticles (NPs) were encapsulated. The presence of Pt facilitates the charge separation on the photoactive Ti-MOF, while the hydrophobic porous DM-LZU1 shell promotes reactant enrichment. Interfacial pores acting as nanoreactors ensure fast electron and mass transport between the active Pt NPs and the concentrated reactants, leading to high photocatalytic activity. This work presents a new concept for the design of various photocatalysts with considerable activity.