Effect of Ceramic Formation on the Emission of Eu3+ and Nd3+ Ions in Double Perovskites.
Natalia Miniajluk-GawełBartosz BondziorKarol LemańskiThi Hong Quan VuDagmara StefańskaRemy BoulesteixPrzemysław Jacek DereńPublished in: Materials (Basel, Switzerland) (2021)
Herein, the structure, morphology, as well as optical properties of the powder and ceramic samples of Ba2MgWO6 are presented. Powder samples were obtained by high temperature solid-state reaction, while, for the ceramics, the SPS technique under 50-MPa pressure was applied. The morphology of the investigated samples showed some agglomeration and grains with a submicron size of 490-492 µm. The theoretical density and relative density of ceramics were calculated using the Archimedes method. The influence of sample preparation on the position, shape, and character of the host, as well as dopants emission was investigated. Sample sintering enhances regular emission of WO6 groups causing a blue shift of Ba2MgWO6 emission. Nonetheless, under X-ray excitation, only the green emission of inversion WO6 group was detected. For the ceramic doped with Eu3+ ions, the emission of both host and dopant was detected. However, for the powder efficient host to activator energy, the transfer process occurred, and only the magnetic dipole emission of Eu3+ was detected. The intensity of Nd3+ ions of Ba2MgWO6 powder sample is five times higher than for the ceramic. The sintering process reduces inversion defects and creates a highly symmetrical site of neodymium ions. The emission of Ba2MgWO6:Nd3+ consists of transitions from the 4F3/2 excited level to the 4IJ multiplet states with the dominance of the 4F3/2→4I11/2 one. The spectroscopic quality parameter and branching ratio of Nd3+ emission are presented.