The relationships between dynamic resting-state networks and social behavior in autism spectrum disorder revealed by fuzzy entropy-based temporal variability analysis of large-scale network.
Yu FengXiaodong KangHesong WangJing CongWenwen ZhuangKaiqing XueFali LiDezhong YaoPeng XuTao ZhangPublished in: Cerebral cortex (New York, N.Y. : 1991) (2022)
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by a core deficit in social processes. However, it is still unclear whether the core clinical symptoms of the disorder can be reflected by the temporal variability of resting-state network functional connectivity (FC). In this article, we examined the large-scale network FC temporal variability at the local region, within-network, and between-network levels using the fuzzy entropy technique. Then, we correlated the network FC temporal variability to social-related scores. We found that the social behavior correlated with the FC temporal variability of the precuneus, parietal, occipital, temporal, and precentral. Our results also showed that social behavior was significantly negatively correlated with the temporal variability of FC within the default mode network, between the frontoparietal network and cingulo-opercular task control network, and the dorsal attention network. In contrast, social behavior correlated significantly positively with the temporal variability of FC within the subcortical network. Finally, using temporal variability as a feature, we construct a model to predict the social score of ASD. These findings suggest that the network FC temporal variability has a close relationship with social behavioral inflexibility in ASD and may serve as a potential biomarker for predicting ASD symptom severity.
Keyphrases