Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice.
Hasan Al FaruqueEun-Sook ChoiHyo-Ryong LeeJung-Hee KimSukho ParkEunjoo KimPublished in: Nanoscale (2020)
Until now, magnetic hyperthermia was used to remove solid tumors by targeting magnetic nanoparticles (MNPs) to tumor sites. In this study, leukemia cells in the bloodstream were directly removed by whole-body hyperthermia, using leukemia cell-specific MNPs. An epithelial cellular adhesion molecule (EpCAM) antibody was immobilized on the surface of MNPs (EpCAM-MNPs) to introduce the specificity of MNPs to leukemia cells. The viability of THP1 cells (human monocytic leukemia cells) was decreased to 40.8% of that in control samples by hyperthermia using EpCAM-MNPs. In AKR mice, an animal model of lymphoblastic leukemia, the number of leukemia cells was measured following the intravenous injection of EpCAM-MNPs and subsequent whole-body hyperthermia treatment. The result showed that the leukemia cell number was also decreased to 43.8% of that without the treatment of hyperthermia, determined by Leishman staining of leukemia cells. To support the results, simulation analysis of heat transfer from MNPs to leukemia cells was performed using COMSOL Multiphysics simulation software. The surface temperature of leukemia cells adhered to EpCAM-MNPs was predicted to be increased to 82 °C, whereas the temperature of free cells without adhered MNPs was predicted to be 38 °C. Taken together, leukemia cells were selectively removed by magnetic hyperthermia from the bloodstream, because EpCAM-modified magnetic particles were specifically attached to leukemia cell surfaces. This approach has the potential to remove metastatic cancer cells, and pathogenic bacteria and viruses floating in the bloodstream.
Keyphrases
- induced apoptosis
- acute myeloid leukemia
- cell cycle arrest
- bone marrow
- oxidative stress
- cell proliferation
- stem cells
- type diabetes
- cell adhesion
- single cell
- cell death
- circulating tumor cells
- endothelial cells
- risk assessment
- skeletal muscle
- smoking cessation
- pseudomonas aeruginosa
- high dose
- biofilm formation
- cell therapy
- ionic liquid
- data analysis