Login / Signup

Structure and Stability of High CaO- and P2O5-Containing Silicate and Borosilicate Bioactive Glasses.

Sakthi PrasadAnuraag GaddamAnuradha JanaShashi KantP K SinhaSucheta TripathyK AnnapurnaJosé Maria da Fonte FerreiraAmarnath R AlluKaushik Biswas
Published in: The journal of physical chemistry. B (2019)
The present work elucidates about the structure of bioactive glasses having chemical compositions expressed as (mol %) (50.0 - x)SiO2-xB2O3-9.3Na2O-37CaO-3.7P2O5, where x = 0.0, 12.5, 25, and 37.5, and establishes a correlation between the structure and thermal stability. The structural modifications in the parent boron-free glass (B0) with the gradual substitutions of B2O3 for SiO2 are assessed by Raman and 29Si, 31P, 11B, and 23Na magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopies. The structural studies reveal the presence of QSi2 and QSi3 structural units in both silicate and borosilicate glasses. However, QSi4(3B) units additionally form upon incorporating B2O3 in B0 glass. B-containing silicate glasses exhibit both three-coordinated boron (BIII) and four-coordinated boron (BIV) units. The 31P MAS-NMR studies reveal that the majority of phosphate species exist as isolated orthophosphate (QP0) units. The incorporation of B2O3 in B0 glass increases the cross-linking between the SiO4 and BO4 structural units. However, incorporation of B2O3 lowers the glass thermal stability (ΔT), as shown by differential scanning calorimetry. Although both silicate and borosilicate glasses exhibit good in vitro apatite-forming ability and cell compatibility, the bactericidal action against Escherichia coli bacteria is more evident in borosilicate glass in comparison to silicate base glass. The controlled release of (BO3)3- ions from boron-modified bioactive glasses improves both the cell proliferation and the antibacterial properties, making them promising for hard tissue engineering applications.
Keyphrases