Login / Signup

Increasing test specificity without impairing sensitivity: lessons learned from SARS-CoV-2 serology.

Thomas PerkmannThomas KollerNicole Perkmann-NageleMaria Ozsvar-KozmaDavid EyrePhilippa MatthewsAbbie BownNicole E StoesserMarie-Kathrin BreyerRobab Breyer-KohansalOtto C BurghuberSlyvia HartlDaniel AletahaDaniela SieghartPeter QuehenbergerRodrig MarculescuPatrick MucherAstrid RadakovicsMiriam KlausbergerMark DuerkopBarba HolzerBoris HartmannRobert StrasslGerda LeitnerFlorian GrebienWilhelm GernerReingard GrabherrOswald F WagnerChristoph J BinderHelmuth Haslacher
Published in: Journal of clinical pathology (2022)
For SARS-CoV-2 serology, SIT² proved to be the best diagnostic choice at both 5% and 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can potentially be helpful for the serology of other infectious diseases.
Keyphrases
  • sars cov
  • infectious diseases
  • respiratory syndrome coronavirus
  • climate change
  • machine learning
  • deep learning
  • coronavirus disease
  • structural basis