Chiral Twist Interface Modulation Enhances Thermoelectric Properties of Tellurium Crystal.
Stanley AbbeyHanhwi JangBrakowaa FrimpongVan Quang NguyenJong Ho ParkSu-Dong ParkSunglae ChoYeon Sik JungKi-Ha HongMin-Wook OhPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
Manipulating the grain boundary and chiral structure of enantiomorphic inorganic thermoelectric materials facilitates a new degree of freedom for enhancing thermoelectric energy conversion. Chiral twist mechanisms evolve by the screw dislocation phenomenon in the nanostructures; however, contributions of such chiral transport have been neglected for bulk crystals. Tellurium (Te) has a chiral trigonal crystal structure, high band degeneracy, and lattice anharmonicity for high thermoelectric performance. Here, Sb-doped Te crystals are grown to minimize the severe grain boundary effects on carrier transport and investigate the interface of chiral Te matrix and embedded achiral Sb 2 Te 3 precipitates, which induce unusual lattice twists. The low grain boundary scattering and conformational grain restructuring provide electrical-favorable semicoherent interfaces. This maintains high electrical conductivity leading to a twofold increase in power factor compared to polycrystal samples. The embedded Sb 2 Te 3 precipitates concurrently enable moderate phonon scattering leading to a remarkable decrease in lattice thermal conductivity and a high dimensionless figure of merit (zT) of 1.1 at 623 K. The crystal growth and chiral atomic reorientation unravel the emerging benefits of interface engineering as a crucial contributor to effectively enhancing carrier transport and minimizing phonon propagation in thermoelectric materials.