hydro SIM: super-resolution speckle illumination microscopy with a hydrogel diffuser.
Zijun GaoKeyi HanXuanwen HuaWenhao LiuShu JiaPublished in: Biomedical optics express (2024)
Super-resolution microscopy has emerged as an indispensable methodology for probing the intricacies of cellular biology. Structured illumination microscopy (SIM), in particular, offers an advantageous balance of spatial and temporal resolution, allowing for visualizing cellular processes with minimal disruption to biological specimens. However, the broader adoption of SIM remains hampered by the complexity of instrumentation and alignment. Here, we introduce speckle-illumination super-resolution microscopy using hydrogel diffusers ( hydro SIM). The study utilizes the high scattering and optical transmissive properties of hydrogel materials and realizes a remarkably simplified approach to plug-in super-resolution imaging via a common epi-fluorescence platform. We demonstrate the hydro SIM system using various phantom and biological samples, and the results exhibited effective 3D resolution doubling, optical sectioning, and high contrast. We foresee hydro SIM, a cost-effective, biocompatible, and user-accessible super-resolution methodology, to significantly advance a wide range of biomedical imaging and applications.
Keyphrases
- single molecule
- high resolution
- high speed
- drug delivery
- living cells
- high throughput
- mass spectrometry
- hyaluronic acid
- optical coherence tomography
- label free
- wound healing
- magnetic resonance
- electronic health record
- computed tomography
- drug release
- molecular dynamics simulations
- energy transfer
- photodynamic therapy
- fine needle aspiration
- quantum dots