Mechanical Properties of Protein-Based Hydrogels Derived from Binary Protein Mixtures-A Feasibility Study.
Sandra HaasJürgen HubbuchPublished in: Polymers (2023)
Hydrogels based on natural polymers such as proteins are considered biocompatible and, therefore, represent an interesting class of materials for application in the field of biomedicine and high-performance materials. However, there is a lack of understanding of the proteins which are able to form hydrogel networks by photoinduced dityrosine crosslinking as well as a profound knowledge of the formed network itself and the mechanisms which are responsible for the resulting mechanical properties of such protein-based hydrogels. In this study, casein, bovine serum albumin, α-amylase, and a hydrophobic elastin-like protein were used to prepare binary protein mixtures with defined concentration ratios. After polymerization, the mechanical properties of the resulting homopolymeric and copolymeric hydrogels were determined using rheological methods depending on the protein shares used. In additional uniaxial compression tests, the fracture strain was shown to be independent of the protein shares, while hydrogel toughness and compressive strength were increased for protein-based hydrogels containing casein.