A potential link between lateral semicircular canal orientation, head posture, and dietary habits in extant rhinos (Perissodactyla, Rhinocerotidae).
Rico SchellhornPublished in: Journal of morphology (2017)
Extant rhinoceroses share the characteristic nasal horn, although the number and size of horns varies among the five species. Although all species are herbivores, their dietary preferences, occipital shapes, and common head postures vary. Traditionally, to predict the "usual" head posture (the most used head posture of animals during normal unstressed activities, i.e., standing) of rhinos, the occipital shape was used. While a backward inclined occiput implies a downward hanging head (often found in grazers), a forward inclined occiput is related to the horizontal head posture in browsing rhinos. In this study, the lateral semicircular canal (LSC) of the bony labyrinth was virtually reconstructed from µCT-images in order to investigate a possible link between LSC orientation and head posture in extant rhinoceroses. The usual head posture was formerly reconstructed for several non-rhinoceros taxa with the assumption that the LSC of the inner ear is held horizontal (parallel to the ground) during normal activity of the living animal. The current analysis of the LSC orientation resulted in a downward inclined usual head posture for the grazing white rhinoceros and a nearly horizontal head posture in the browsing Javan rhinoceros. The other three browsing or mixed feeding species show subhorizontal (closer to horizontal than a downgrade inclination) head postures. The results show that anatomical and behavioral aspects, like occipital shape, presence and size of horns/tusk-like lower incisors, as well as feeding and feeding height preferences influence the usual head posture. Because quantitative behavioral data are lacking for the usual head postures of the extant rhinos, the here described relationship between the LSC orientation and the resulting head posture linked to feeding preferences gives new insights. The results show, that the inner ear provides additional information to interpret usual head postures linked to feeding preferences that can easily be adapted to fossil rhinoceroses.