Login / Signup

Comparison of Mineral Composition in Microgreens and Mature leaves of Celery (Apium graveolens L.).

Mandeep SinghUsha NaraNeeraj RaniDharminder PathakKirandeep KaurManjeet Kaur Sangha
Published in: Biological trace element research (2022)
Celery (Apium graveolens L.), a medicinal crop, occupies a significant position in the human diet possessing several essential macro- and microelements. For proper proximate analysis, an experiment was executed by taking 20 celery genotypes. The genotypes were analyzed for macro- and microminerals which include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), sulfur (S), zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn). Results from analysis revealed that the  amount of N, P, Ca, Na, and S was higher in microgreens, whereas a higher value for K was found in mature leaves. Zn, Cu, and Mn contents were found to be higher in mature leaves, while no significant difference was observed for Fe content in microgreens and mature leaves. The inclusion of celery microgreens in our daily diet would fulfill a significant portion of our daily mineral requirement. This is the first report on mineral comparison between microgreens and mature leaves of celery. It opens a new avenue for further enhancement of minerals via biofortification of this medicinal wonder crop through systematic breeding efforts. On the basis of mineral analysis, three genotypes, namely PAU2, PAU4, and PAU16, were found superior in terms of mineral composition in microgreens and mature leaves of celery. Principal component and cluster analyses divide the genotypes into two different clusters on the basis of variability in mineral composition.
Keyphrases
  • physical activity
  • essential oil
  • metal organic framework
  • climate change
  • heavy metals
  • room temperature
  • protein kinase
  • single cell