Origin and Diversification of the Saguaro Cactus (Carnegiea gigantea): A Within-Species Phylogenomic Analysis.
Michael J SandersonAlberto BúrquezDario CopettiMichelle M McMahonYichao ZengMartin F WojciechowskiPublished in: Systematic biology (2022)
Reconstructing accurate historical relationships within a species poses numerous challenges, not least in many plant groups in which gene flow is high enough to extend well beyond species boundaries. Nonetheless, the extent of tree-like history within a species is an empirical question on which it is now possible to bring large amounts of genome sequence to bear. We assess phylogenetic structure across the geographic range of the saguaro cactus, an emblematic member of Cactaceae, a clade known for extensive hybridization and porous species boundaries. Using 200 Gb of whole genome resequencing data from 20 individuals sampled from 10 localities, we assembled two data sets comprising 150,000 biallelic single nucleotide polymorphisms (SNPs) from protein coding sequences. From these, we inferred within-species trees and evaluated their significance and robustness using five qualitatively different inference methods. Despite the low sequence diversity, large census population sizes, and presence of wide-ranging pollen and seed dispersal agents, phylogenetic trees were well resolved and highly consistent across both data sets and all methods. We inferred that the most likely root, based on marginal likelihood comparisons, is to the east and south of the region of highest genetic diversity, which lies along the coast of the Gulf of California in Sonora, Mexico. Together with striking decreases in marginal likelihood found to the north, this supports hypotheses that saguaro's current range reflects postglacial expansion from the refugia in the south of its range. We conclude with observations about practical and theoretical issues raised by phylogenomic data sets within species, in which SNP-based methods must be used rather than gene tree methods that are widely used when sequence divergence is higher. These include computational scalability, inference of gene flow, and proper assessment of statistical support in the presence of linkage effects. [Phylogenomics; phylogeography; rooting; Sonoran Desert.].