Login / Signup

Why Does Dual-Tasking Hamper Implicit Sequence Learning?

Eva RöttgerFang ZhaoRobert GaschlerHilde Haider
Published in: Journal of cognition (2021)
Research on the limitations of dual-tasking might profit from using setups with a predictable sequence of stimuli and responses and assessing the acquisition of this sequence. Detrimental effects of dual-tasking on implicit sequence learning in the serial reaction time task (SRTT; Nissen & Bullemer, 1987) - when paired with an uncorrelated task - have been attributed to participants' lack of separating the streams of events in either task. Assuming that co-occurring events are automatically integrated, we reasoned that participants could need to first learn which events co-occur, before they can acquire sequence knowledge. In the training phase, we paired an 8-element visual-manual SRTT with an auditory-vocal task. Afterwards, we tested under single-tasking conditions whether SRTT sequence knowledge had been acquired. By applying different variants of probabilistic SRTT-tone pairings across three experiments, we tested what type of predictive relationship was needed to preserve sequence learning. In Experiment 1, where half of the SRTT-elements were paired to 100% with one specific tone and the other half randomly, only the fixedly paired elements were learned. Yet, no sequence learning was found when each of the eight SRTT-elements was paired with tone identity in a 75%-25% ratio (Experiment 2). Sequence learning was, however, intact when the 75%-25% ratio was applied to the four SRTT target locations instead (Experiment 3). The results suggest that participants (when lacking a separation of the task representations while dual-tasking) can learn a sequence inherent in one of two tasks to the extent that across-task contingencies can be learned first.
Keyphrases
  • amino acid
  • healthcare
  • working memory
  • copy number
  • genome wide
  • hearing loss