Magnetic Quantum Dot Nanobead-Based Fluorescent Immunochromatographic Assay for the Highly Sensitive Detection of Aflatoxin B1 in Dark Soy Sauce.
Liang GuoYanna ShaoHong DuanWei MaYuankui LengXiaolin HuangYonghua XiongPublished in: Analytical chemistry (2019)
Herein, we synthesized bifunctional magnetic fluorescent beads (MFBs) with a distinct core/shell structure by encapsulating octadecylamine-coated CdSe/ZnS QDs (OC-QDs) and oleic acid-modified iron oxide nanoparticles (OA-IONPs) into two polymer matrixes with different hydrophobic properties. The OC-QDs and OA-IONPs were mainly distributed in the outer layer of MFBs. The resultant MFBs displayed ca. 226-fold stronger fluorescence emission relative to the corresponding OC-QDs and retained ca. 45.4% of the saturation magnetization of the OA-IONPs. The MFBs were used to purify and enrich aflatoxin B1 (AFB1) from dark soy sauce and then utilized as a fluorescent reporter of immunochromatographic assay (ICA) for the sensitive detection of AFB1. Under the optimal detection conditions, the MFB-based ICA (MFB-ICA) displayed a dynamic linear detection of AFB1 in sauce extract over the range of 5-150 pg/mL with a half maximal inhibitory concentration of 27 ± 3 pg/mL ( n = 3). The detection limits for AFB1 in sauce extract and real dark soy sauce were 3 and 51 pg/mL, respectively, which are considerably better than those of the previously reported fluorescent bead-based ICA methods. The analytical performance of the proposed MFB-ICA in terms of selectivity and accuracy was investigated by analyzing AFB1-spiked dark soy sauce samples. The reliability of the proposed method was further confirmed by ultraperformance liquid chromatography with fluorescence detection. With the combined advantages of QDs and IONPs, the resultant MFBs offer great potential as reporters of ICA for the sensitive detection of trace pollutants in complex matrix samples.