Login / Signup

Sodium ion transport across the endothelial glycocalyx layer under electric field conditions: A molecular dynamics study.

Xi Zhuo JiangLumeng YangYiannis VentikosKai Hong Luo
Published in: The Journal of chemical physics (2021)
In the present research, the sodium ion transport across the endothelial glycocalyx layer (EGL) under an imposed electric field is investigated, for the first time, using a series of molecular dynamics simulations. The electric field is perpendicularly imposed on the EGL with varying strengths. The sodium ion molarity difference between the inner and outer layers of EGL, Δc, is used to quantify the sodium transport in the presence of the negatively charged glycocalyx sugar chains. Results suggest that a weak electric field increases Δc, regardless of whether the electric field is imposed perpendicularly inward or outward. By contrast, a strong electric field drives sodium ions to travel in the same orientation as the electric field. Scrutiny of the charge distribution of the glycocalyx sugar chains suggests that the electric field modifies the spatial layouts of glycocalyx atoms as it drives the transport of sodium ions. The modification in glycocalyx layouts further changes the inter-molecular interactions between glycocalyx sugar chains and sodium ions, thereby limiting the electric field control of ion transport. The sodium ions, in turn, alter the apparent bending stiffness of glycocalyx. Moreover, the negative charges of the glycocalyx sugar chains play an important role in maintaining structural stability of endothelial glycocalyx. Based on the findings, a hypothesis is proposed regarding the existence of a strength threshold of the electric field in controlling charged particles in the endothelium, which offers an alternative explanation for contrasting results in previous experimental observations.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • endothelial cells
  • quantum dots
  • magnetic resonance imaging
  • magnetic resonance
  • nitric oxide
  • mass spectrometry
  • aqueous solution
  • living cells