Login / Signup

Consequences of HLA-associated mutations in HIV-1 subtype C Nef on HLA-I downregulation ability.

Jaclyn Kelly MannErasha RajkoomarSteven W JinQiniso MkhizeOmolara BaiyegunhiPholisiwe MbonaMark A BrockmanThumbi Ndung'u
Published in: Journal of medical virology (2020)
Identification of CD8+ T lymphocyte (CTL) escape mutations that compromise the pathogenic functions of the Nef protein may be relevant for an HIV-1 attenuation-based vaccine. Previously, HLA-associated mutations 102H, 105R, 108D, and 199Y were individually statistically associated with decreased Nef-mediated HLA-I downregulation ability in a cohort of 298 HIV-1 subtype C infected individuals. In the present study, these mutations were introduced by site-directed mutagenesis into different patient-derived Nef sequence backgrounds of high similarity to the consensus C Nef sequence, and their ability to downregulate HLA-I was measured by flow cytometry in a CEM-derived T cell line. A substantial negative effect of 199Y on HLA-I downregulation and Nef expression was observed, while 102H and 105R displayed negative effects on HLA-I downregulation ability and Nef expression to a lesser extent. The total magnitude of CTL responses in individuals harboring the 199Y mutation was lower than those without the mutation, although this was not statistically significant. Overall, a modest positive relationship between Nef-mediated HLA-I downregulation ability and total magnitude of CTL responses was observed, suggesting that there is a higher requirement for HLA-I downregulation with increased CTL pressure. These results highlight a region of Nef that could be targeted by vaccine-induced CTL to reduce HLA-I downregulation and maximize CTL efficacy.
Keyphrases