Compression of time in double-step saccades.
Eckart ZimmermannPublished in: Journal of neurophysiology (2024)
Temporal intervals appear compressed at the time of saccades. Here, I asked if saccadic compression of time is related to motor planning or to saccade execution. To dissociate saccade motor planning from its execution, I used the double-step paradigm, in which subjects have to perform two horizontal saccades successively. At various times around the saccade sequence, I presented two large horizontal bars, which marked an interval lasting 100 ms. After 700 ms, a second temporal interval was presented, varying in duration across trials. Subjects were required to judge which interval appeared shorter. I found that during the first saccades in the double-step paradigm, temporal intervals were compressed. Maximum temporal compression coincided with saccade onset. Around the time of the second saccade, I found temporal compression as well, however, the time of maximum compression preceded saccade onset by about 70 ms. I compared the magnitude and time of temporal compression between double-step saccades and amplitude-matched single saccades, which I measured separately. Although I found no difference in time compression magnitude, the time when maximum compression occurred differed significantly. I conclude that the temporal shift of time compression in double-step saccades demonstrates the influence of saccade motor planning on time perception. NEW & NOTEWORTHY Visually defined temporal intervals appear compressed at the time of saccades. Here, I tested time perception during double-step saccades dissociating saccade planning from execution. Although around the time of the first saccade, peak compression was found at saccade onset, compression around the time of the second saccade peaked 70 ms before saccade onset. The results suggest that saccade motor planning influences time perception.
Keyphrases