Login / Signup

Crystal structure, Hirshfeld surface analysis, inter-action energy and DFT calculations and energy frameworks of methyl 6-chloro-1-methyl-2-oxo-1,2-di-hydro-quinoline-4-carboxyl-ate.

Yassir Filali BabaSonia HayaniSamira DalbouhaYasemin TümerFouad Ouazzani ChahdiJoel T MagueYoussef Kandri RodiNada Kheira SebbarEl Mokhtar Essassi
Published in: Acta crystallographica. Section E, Crystallographic communications (2022)
In the title compound, C 12 H 10 ClNO 3 , the di-hydro-quinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)°. An intra-molecular C-H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol-ecules parallel to (10) are generated by C-H⋯O and C-H⋯Cl hydrogen bonds, and are stacked through slipped π-stacking inter-actions between inversion-related di-hydro-quinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (34.2%), H⋯O/O⋯H (19.9%), H⋯Cl/Cl⋯H (12.8%), H⋯C/C⋯H (10.3%) and C⋯C (9.7%) inter-actions. Computational chemistry indicates that in the crystal, the C-H⋯Cl hydrogen-bond energy is -37.4 kJ mol -1 , while the C-H⋯O hydrogen-bond energies are -45.4 and -29.2 kJ mol -1 . An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated via the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state, and the HOMO-LUMO behaviour was elucidated to determine the energy gap.
Keyphrases