Improvement of Electrochemical Water Oxidation by Fine-Tuning the Structure of Tetradentate N4 Ligands of Molecular Copper Catalysts.
Junyu ShenMei WangJinsuo GaoHongxian HanHong LiuLicheng SunPublished in: ChemSusChem (2017)
Two copper complexes, [(L1)Cu(OH2 )](BF4 )2 [1; L1=N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane] and [(L2)Cu(OH2 )](BF4 )2 [2, L2=2,7-bis(2-pyridyl)-3,6-diaza-2,6-octadiene], were prepared as molecular water oxidation catalysts. Complex 1 displayed an overpotential (η) of 1.07 V at 1 mA cm-2 and an observed rate constant (kobs ) of 13.5 s-1 at η 1.0 V in pH 9.0 phosphate buffer solution, whereas 2 exhibited a significantly smaller η (0.70 V) to reach 1 mA cm-2 and a higher kobs (50.4 s-1 ) than 1 under identical test conditions. Additionally, 2 displayed better stability than 1 in controlled potential electrolysis experiments with a faradaic efficiency of 94 % for O2 evolution at 1.58 V, when a casing tube was used for the Pt cathode. A possible mechanism for 1- and 2-catalyzed O2 evolution reactions is discussed based on the experimental evidence. These comparative results indicate that fine-tuning the structures of tetradentate N4 ligands can bring about significant change in the performance of copper complexes for electrochemical water oxidation.