Login / Signup

Giant g-factors and fully spin-polarized states in metamorphic short-period InAsSb/InSb superlattices.

Yuxuan JiangMaksim ErmolaevGela KipshidzeSeongphill MoonMykhaylo OzerovDmitry SmirnovZhigang JiangSergey Suchalkin
Published in: Nature communications (2022)
Realizing a large Landé g-factor of electrons in solid-state materials has long been thought of as a rewarding task as it can trigger abundant immediate applications in spintronics and quantum computing. Here, by using metamorphic InAsSb/InSb superlattices (SLs), we demonstrate an unprecedented high value of g ≈ 104, twice larger than that in bulk InSb, and fully spin-polarized states at low magnetic fields. In addition, we show that the g-factor can be tuned on demand from 20 to 110 via varying the SL period. The key ingredients of such a wide tunability are the wavefunction mixing and overlap between the electron and hole states, which have drawn little attention in prior studies. Our work not only establishes metamorphic InAsSb/InSb as a promising and competitive material platform for future quantum devices but also provides a new route toward g-factor engineering in semiconductor structures.
Keyphrases
  • solid state
  • room temperature
  • molecular dynamics
  • density functional theory
  • climate change
  • high throughput
  • current status
  • solar cells
  • mass spectrometry
  • monte carlo
  • quantum dots