In Situ Spectroelectrochemical Studies into the Formation and Stability of Robust Diazonium-Derived Interfaces on Gold Electrodes for the Immobilization of an Oxygen-Tolerant Hydrogenase.
Tomos G A A HarrisNina HeidaryJacek KozuchStefan FrielingsdorfOliver LenzMaria-Andrea MroginskiPeter HildebrandtIngo ZebgerAnna FischerPublished in: ACS applied materials & interfaces (2018)
Surface-enhanced infrared absorption spectroscopy is used in situ to determine the electrochemical stability of organic interfaces deposited onto the surface of nanostructured, thin-film gold electrodes via the electrochemical reduction of diazonium salts. These interfaces are shown to exhibit a wide electrochemical stability window in both acetonitrile and phosphate buffer, far surpassing the stability window of thiol-derived self-assembled monolayers. Using the same in situ technique, the application of radical scavengers during the electrochemical reduction of diazonium salts is shown to moderate interface formation. Consequently, the heterogeneous charge-transfer resistance can be reduced sufficiently to enhance the direct electron transfer between an immobilized redox-active enzyme and the electrode. This was demonstrated for the oxygen-tolerant [NiFe] hydrogenase from the "Knallgas" bacterium Ralstonia eutropha by relating its electrochemical activity for hydrogen oxidation to the interface properties.