Login / Signup

Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites.

Narsimha MamidiHéctor Manuel LeijaJose Manuel DiabbIrasema Lopez RomoDiana HernandezJavier Villela CastrejónOscar Martinez RomeroEnrique V BarreraAlex Elias Zúñiga
Published in: Journal of biomedical materials research. Part A (2017)
The carbon nanotubes were chosen for this study since long, small to medium diameter, and unfunctionalized nanotubes are considered less favorable for nontoxic applications. The intent of the study is to expand the use of CNTs beyond current understood nontoxic means. Multiwall carbon nanotube/ultrahigh molecular weight polyethylene (MWCNT/UHMWPE) nanocomposites were prepared by reinforcing long chain UHMWPE with MWCNTs. These nanocomposites were prepared to study their cytotoxicity assessments with human fibroblast cell lines. Cell adhesion, proliferation, and differentiation were studied with human fibroblast cell lines. In vitro studies revealed good cell viability on the surface of MWCNT/UHMWPE composites even after 72 h. The nanocomposites showed better cell attachment for fibroblasts than pristine UHMWPE. Overall, the results showed that MWCNT/UHMWPE composites displayed good cellular growth and biocompatibility indicating another way CNTs can be nontoxic. These nanocomposites offer nontoxic conditions that can be used in biomedical devices because the long chain UHMWPE is entangled with long MWCNTs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3042-3049, 2017.
Keyphrases
  • carbon nanotubes
  • endothelial cells
  • stem cells
  • cell adhesion
  • signaling pathway
  • reduced graphene oxide
  • gold nanoparticles
  • induced pluripotent stem cells
  • wound healing
  • aqueous solution