Login / Signup

Automated Parameterization of Coarse-Grained Polyethylenimine under a Martini Framework.

Subhamoy MahajanTian Tang
Published in: Journal of chemical information and modeling (2023)
As a versatile polymer in many applications, synthesized polyethylenimine (PEI) is polydisperse with diverse branched structures that attain pH-dependent protonation states. Understanding the structure-function relationship of PEI is necessary for enhancing its efficacy in various applications. Coarse-grained (CG) simulations can be performed at length and time scales directly comparable with experimental data while maintaining the molecular perspective. However, manually developing CG forcefields for complex PEI structures is time-consuming and prone to human errors. This article presents a fully automated algorithm that can coarse-grain any branched architecture of PEI from its all-atom (AA) simulation trajectories and topology. The algorithm is demonstrated by coarse-graining a branched 2 kDa PEI, which can replicate the AA diffusion coefficient, radius of gyration, and end-to-end distance of the longest linear chain. Commercially available 25 and 2 kDa Millipore-Sigma PEIs are used for experimental validation. Specifically, branched PEI architectures are proposed, coarse-grained using the automated algorithm, and then simulated at different mass concentrations. The CG PEIs can reproduce existing experimental data on PEI's diffusion coefficient and Stokes-Einstein radius at infinite dilution as well as its intrinsic viscosity. This suggests a strategy where probable chemical structures of synthetic PEIs can be inferred computationally using the developed algorithm. The coarse-graining methodology presented here can also be extended to other polymers.
Keyphrases