Login / Signup

Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

Shengyu LiuBuzhou TangQingcai ChenXiaolong WangXiaoming Fan
Published in: Computational and mathematical methods in medicine (2015)
Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.
Keyphrases
  • machine learning
  • deep learning
  • preterm birth
  • artificial intelligence
  • healthcare
  • physical activity
  • weight loss
  • gestational age
  • high intensity
  • drug induced