Lithium Plating and Stripping on Carbon Nanotube Sponge.
Gaojing YangYejing LiYuxin TongJiliang QiuShuai LiuSimeng ZhangZhaoruxin GuanBin XuZhaoxiang WangLiquan ChenPublished in: Nano letters (2018)
Lithium metal is an ideal anode material due to its high specific capacity and low redox potential. However, issues such as dendritic growth and low Coulombic efficiency prevent its application in secondary lithium batteries. The use of three-dimensional (3D) porous current collector is an effective strategy to solve these problems. Herein, commercial carbon nanotube (CNT) sponge is used as a 3D current collector for dendrite-free lithium metal deposition to improve the Coulombic efficiency and the cycle stability of the lithium metal batteries. The high specific surface area of the CNT increases the density of the lithium nucleation sites and ensures the uniform lithium deposition while the "pre-lithiation" behavior of the porous CNT enhances its affinity with the deposited lithium. Meanwhile, the lithium plating/stripping on the sponge maintains high Coulombic efficiency and high cycling stability due to the robust structure of graphitic-amorphous carbon composite in the ether-based electrolyte. Our findings exhibit the feasibility of using CNT sponge as a 3D porous current collector for lithium deposition. They shed light on designing and developing advanced current collectors for the lithium metal electrode and will promote the commercialization of the secondary lithium batteries.