Login / Signup

Arbitrary-Order Finite-Time Corrections for the Kramers-Moyal Operator.

Leonardo Rydin GorjãoDirk WitthautKlaus LehnertzPedro G Lind
Published in: Entropy (Basel, Switzerland) (2021)
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers-Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers-Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers-Moyal coefficients for discontinuous processes which can be easily implemented-employing Bell polynomials-in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.
Keyphrases
  • electronic health record
  • big data
  • machine learning
  • deep learning