Nanostructured carbons containing FeNi/NiFe 2 O 4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions.
Iram AzizJin Goo LeeHatice DuranKatrin KirchhoffRichard T BakerJohn T S IrvineSalman Noshear ArshadPublished in: RSC advances (2019)
Non-precious metal-based electrocatalysts on carbon materials with high durability and low cost have been developed to ameliorate the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) for electrochemical energy applications such as in fuel cells and water electrolysis. Herein, two different morphologies of FeNi/NiFe 2 O 4 supported over hierarchical N-doped carbons were achieved via carbonization of the polymer nanofibers by controlling the ratio of metal salts to melamine: a mixture of carbon nanotubes (CNTs) and graphene nanotubes (GNTs) supported over carbon nanofibers (CNFs) with spherical FeNi encapsulated at the tips (G/CNT@NCNF, 1 : 3), and graphene sheets wrapped CNFs with embedded needle-like FeNi (GS@NCNF, 2 : 3). G/CNT@NCNF shows excellent ORR activity (on-set potential: 0.948 V vs. RHE) and methanol tolerance, whilst GS@NCNF exhibited significantly lower over-potential of only 230 mV at 10 mA cm -2 for OER. Such high activities are due to the synergistic effects of bimetallic NPs encapsulated at CNT tips and N-doped carbons with unique hierarchical structures and the desired defects.
Keyphrases
- carbon nanotubes
- quantum dots
- low cost
- metal organic framework
- highly efficient
- induced apoptosis
- ionic liquid
- visible light
- gold nanoparticles
- molecularly imprinted
- cell cycle arrest
- room temperature
- human health
- ultrasound guided
- signaling pathway
- carbon dioxide
- mass spectrometry
- endoplasmic reticulum stress
- heavy metals
- cancer therapy
- sewage sludge
- climate change
- pi k akt