Integrated MICROFASP Method with CZE-Based Fractionation Technique and NanoRPLC-ESI-MS/MS for a Comprehensive Proteomics Analysis of a Submicrogram Sample.
Gang LuGuojin YingYu HeYang LiZhenbin ZhangPublished in: Journal of proteome research (2024)
We report a loss-less two-dimensional (2D) separation platform that integrated capillary zone electrophoresis (CZE) fractionation and nanoRPLC-ESI-MS/MS for a comprehensive proteomics analysis of a submicrogram sample. Protein digest was injected into the linear polyacrylamide-coated capillary, followed by CZE separation. The schemes for collecting the fractions were carefully optimized to maximize the protein coverage. The peptide fractions were directly eluted into the autosampler insert vials, followed by the nanoRPLC-ESI-MS/MS analysis without lyophilization and redissolution, thus dramatically minimizing sample loss and potential contamination. The integrated platform generated 30,845 unique peptides and 5231 protein groups from 500 ng of a HeLa protein digest within 11.5 h (90 min CZE fractionation plus 10 h LC-MS analysis). Finally, the developed platform was used to analyze the protein digest prepared by the MICROFASP method with 1 μg of cell lysate as the starting material. Three thousand seven hundred ninety-six ( N = 2, RSD = 4.95%) protein groups and 20,577 ( N = 2, RSD = 7.89%) peptides were identified from only 200 ng of the resulted tryptic digest within 5.5 h. The results indicated that the combination of the MICROFASP method and the developed CZE/nanoRPLC-MS/MS 2D separation platform enabled comprehensive proteome profiling of a submicrogram biological sample. Data are available via ProteomeXchange with the identifier PXD052735.