Login / Signup

Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing.

Lucy NandyJulie L FentonMiriam Arak Freedman
Published in: The journal of physical chemistry. A (2023)
Heterogeneous ice nucleation activity is affected by aerosol particle composition, crystallinity, pore size, and surface area. However, these surface properties are not well understood, regarding how they act to promote ice nucleation and growth to form ice clouds. Therefore, synthesized materials for which surface properties can be tuned were examined in immersion freezing mode in this study. To establish the relationship between particle surface properties and efficiency of ice nucleation, materials, here, covalent organic frameworks (COFs), with different pore diameters and degrees of crystallinity (ordering), were characterized. Results showed that out of all the highly crystalline COFs, the sample with a pore diameter between 2 and 3 nm exhibited the most efficient ice nucleation activity. We posit that the highly crystalline structures with ordered pores have an optimal pore diameter where the ice nucleation activity is maximized and that the not highly crystalline structures with nonordered pores have more sites for ice nucleation. The results were compared and discussed in the context of other synthesized porous particle systems. Such studies give insight into how material features impact ice nucleation activity.
Keyphrases
  • room temperature
  • high resolution
  • photodynamic therapy
  • mass spectrometry
  • optic nerve
  • ionic liquid
  • oxide nanoparticles