Login / Signup

MEGA-PRESS of GABA+: Influences of acquisition parameters.

Dinesh K DeelchandMalgorzata MarjańskaPierre-Gilles HenryMelissa Terpstra
Published in: NMR in biomedicine (2019)
γ-aminobutyric acid (GABA) was the first molecule that was edited with MEGA-PRESS. GABA edited spectroscopy is challenged by limited selectivity of editing pulses. Coediting of resonances from macromolecules (MM) is the greatest single limitation of GABA edited spectroscopy. In this contribution, relative signal contributions from GABA, MM and homocarnosine to the total MEGA-PRESS edited signal at ~3 ppm, i.e., GABA+, are simulated at 3 tesla using several acquisition schemes. The base scheme is modeled after those currently supplied by vendors: it uses typical pulse shapes and lengths, it minimizes the first echo time (TE), and the delay between the editing pulses is kept at TE/2. Edited spectra are simulated for imperfect acquisition parameters such as incorrect frequency, larger chemical shift displacement, incorrect transmit B1 -field calibration for localization and editing pulses, and longer TE. An alternative timing scheme and longer editing pulses are also considered. Additional simulations are performed for symmetric editing around the MM frequency to suppress the MM signal. The relative influences of these acquisition parameters on the constituents of GABA+ are examined from the perspective of modern experimental designs for investigating brain GABA concentration differences in healthy and diseased humans. Other factors that influence signal contributions, such as T1 and T2 relaxation times are also considered.
Keyphrases
  • crispr cas
  • magnetic resonance
  • single molecule
  • high resolution
  • multiple sclerosis
  • mass spectrometry
  • white matter
  • brain injury
  • structural basis