Classification of Neurons in the Primate Reticular Formation and Changes after Recovery from Pyramidal Tract Lesion.
Boubker ZaaimiDemetris S SoteropoulosKaren M FisherC Nicholas RiddleStuart N BakerPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2018)
The reticular formation is important in primate motor control, both in health and during recovery after brain damage. Little is known about the different neurons present in the reticular nuclei. Here we recorded extracellular spikes from the reticular formation in five healthy female awake behaving monkeys (193 cells), and in two female monkeys 1 year after recovery from a unilateral pyramidal tract lesion (125 cells). Analysis of spike shape and four measures derived from the interspike interval distribution identified four clusters of neurons in control animals. Cluster 1 cells had a slow firing rate. Cluster 2 cells had narrow spikes and irregular firing, which often included high-frequency bursts. Cluster 3 cells were highly rhythmic and fast firing. Cluster 4 cells showed negative spikes. A separate population of 42 cells was antidromically identified as reticulospinal neurons in five anesthetized female monkeys. The distribution of spike width in these cells closely overlaid the distribution for cluster 2, leading us tentatively to suggest that cluster 2 included neurons with reticulospinal projections. In animals after corticospinal lesion, cells could be identified in all four clusters. The firing rate of cells in clusters 1 and 2 was increased in lesioned animals relative to control animals (by 52% and 60%, respectively); cells in cluster 2 were also more regular and more bursting in the lesioned animals. We suggest that changes in both membrane properties and local circuits within the reticular formation occur following lesioning, potentially increasing reticulospinal output to help compensate for lost corticospinal descending drive.SIGNIFICANCE STATEMENT This work is the first to subclassify neurons in the reticular formation, providing insights into the local circuitry of this important but little understood structure. The approach developed can be applied to any extracellular recording from this region, allowing future studies to place their data within our current framework of four neural types. Changes in reticular neurons may be important to subserve functional recovery after damage in human patients, such as after stroke or spinal cord injury.
Keyphrases
- induced apoptosis
- cell cycle arrest
- spinal cord injury
- spinal cord
- high frequency
- oxidative stress
- public health
- machine learning
- cell death
- chronic kidney disease
- end stage renal disease
- endothelial cells
- brain injury
- health information
- transcranial magnetic stimulation
- deep learning
- social media
- peritoneal dialysis
- deep brain stimulation
- case control