Login / Signup

A Rapid Thermal Absorption Rate and High Latent Heat Enthalpy Phase Change Fiber Derived from Bio-Based Low Melting Point Copolyesters.

Tsung-Yu LanHsu-I MaoChin-Wen ChenYi-Ting LeeZhi-Yu YangJian-Liang LuoPin-Rong LiSyang-Peng Rwei
Published in: Polymers (2022)
A series of poly(butylene adipate- co -hexamethylene adipate) (PBHA) copolymers with different content of 1,4-cyclohexanedimethanol (CHDM) was synthesized via one-step melt polymerization. The PBHA copolymer with 5 mol% CHDM (PBHA-C5) exhibited a low melting point (T m ) and high enthalpy of fusion (∆H m ) of 35.7 °C and 43.9 J g -1 , respectively, making it a potential candidate for an ambient temperature adjustment textile phase change material (PCM). Polybutylene terephthalate (PBT) was selected as the matrix and blended at different weight ratios of PBHA-C5, and the blended samples showed comparable T m and ∆H m after three cycles of cooling and reheating, indicating good maintenance of their phase changing ability. Samples were then processed via melt spinning with a take-up speed of 200 m min -1 at draw ratios (DR) of 1.0 to 3.0 at 50 °C. The fiber's mechanical strength could be enhanced to 2.35 g den -1 by increasing the DR and lowering the PBHA-C5 content. Infrared thermography showed that a significant difference of more than 5 °C between PBT and other samples was achieved within 1 min of heating, indicating the ability of PBHA-C5 to adjust the temperature. After heating for 30 min, the temperatures of neat PBT, blended samples with 27, 30, and 33 wt% PBHA-C5, and neat PBHA-C5 were 53.8, 50.2, 48.3, 47.2, and 46.5 °C, respectively, and reached an equilibrium state, confirming the temperature adjustment ability of PBHA-C5 and suggesting that it can be utilized in thermoregulating applications.
Keyphrases
  • high resolution
  • body mass index
  • physical activity
  • particulate matter
  • risk assessment
  • editorial comment
  • drug delivery
  • quantum dots
  • mass spectrometry
  • drug release