Correlation of a new index reflecting the fluctuation of parasympathetic tone and fetal acidosis in an experimental study in a sheep model.
Charles GarabedianY Clermont-HamaD SharmaE AubryL ButruilleP DeruelleL StormeJ De JonckheereV Houfflin-DebargePublished in: PloS one (2018)
The autonomic nervous system plays a leading role in the control of fetal homeostasis. Fetal heart rate variability (HRV) analysis is a reflection of its activity. We developed a new index (the Fetal Stress Index, FSI) reflecting parasympathetic tone. The objective of this study was to evaluate this index as a predictor of fetal acid-base status. This was an experimental study on chronically instrumented fetal lambs (n = 11, surgery at 128 +/- 2 days gestational age, term = 145 days). The model was based on 75% occlusion of the umbilical cord for a maximum of 120 minutes or until an arterial pH ≤ 7.20 was reached. Hemodynamic, gasometric and FSI parameters were recorded throughout the experimentation. We studied the FSI during the 10 minutes prior to pH samplings and compared values for pH>7.20 and pH≤ 7.20. In order to analyze the FSI evolution during the 10 minutes periods, we analyzed the minimum, maximum and mean values of the FSI (respectively FSImin, FSImax and FSImean) over the periods. 11 experimentations were performed. During occlusion, the heart rate dropped with an increase in blood pressure (respectively 160(155-182) vs 106(101-120) bpm and 42(41-45) vs 58(55-62) mmHg after occlusion). The FSImin was 38.6 (35.2-43.3) in the group pH>7.20 and was higher in the group pH less than 7.20 (46.5 (43.3-52.0), p = 0.012). The correlation of FSImin was significant for arterial pH (coefficient of -0.671; p = 0.004) and for base excess (coefficient of -0.632; p = 0.009). The correlations were not significant for the other parameters. In conclusion, our new index seems well correlated with the fetal acid-base status. Other studies must be carried out in a situation close to the physiology of labor by sequential occlusion of the cord.
Keyphrases
- heart rate variability
- heart rate
- blood pressure
- gestational age
- umbilical cord
- mesenchymal stem cells
- preterm infants
- preterm birth
- metabolic syndrome
- body mass index
- adipose tissue
- birth weight
- minimally invasive
- magnetic resonance imaging
- skeletal muscle
- bone marrow
- magnetic resonance
- percutaneous coronary intervention
- glycemic control
- case control