Login / Signup

Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles.

Md Imam UddinTyler C KilburnRong YangGary W McCollumDavid Wilson WrightJohn S Penn
Published in: Molecular pharmaceutics (2018)
Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.
Keyphrases