Login / Signup

A Tabletop Persistent-Mode, Liquid-Helium-Free, 1.5-T/90-mm MgB2 "Finger" MRI Magnet for Osteoporosis Screening: Two Design Options.

Dongkeun ParkJuan BascuñánPhilip C MichaelYukikazu Iwasa
Published in: IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee (2017)
In this paper we present two design options for a tabletop liquid-helium-free, persistent-mode 1.5-T/90-mm MgB2 "finger" MRI magnet for osteoporosis screening. Both designs, one with and the other without an iron yoke, satisfy the following criteria: 1) 1.5-T center field with a 90-mm room-temperature bore for a finger to be placed at the magnet center; 2) spatial field homogeneity of <5 ppm over a 20-mm diameter of spherical volume (DSV); 3) persistent-mode operation with temporal stability of <0.1 ppm/hr; 4) liquid-helium-free operation; 5) 5-gauss fringe field radius of <50 cm from the magnet center; and 6) small and light enough for placement on an exam table. Although the magnet is designed to operate nominally at 10 K, maintained by a cryocooler, it has a 5-K temperature margin to keep its 1.5-T persistent field up to 15 K. The magnet will be immersed in a volume of solid nitrogen (SN2) that provides additional thermal mass when the cryocooler is switched off to provide a vibration-free measurement environment. The SN2 enables the magnet to maintain its persistent field over a period of time sufficient for quiescent measurement, while still limiting the magnet operating temperature to ≤15 K. We discuss first pros and cons of each design, and then further studies of our proposed MgB2 finger MRI magnet.
Keyphrases
  • room temperature
  • magnetic resonance imaging
  • ionic liquid
  • contrast enhanced
  • postmenopausal women
  • bone mineral density
  • magnetic resonance
  • diffusion weighted imaging
  • high frequency