Login / Signup

High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum.

Zejie YuYeyu TongHon Ki TsangXiankai Sun
Published in: Nature communications (2020)
Photonic bound states in the continuum (BICs) have been exploited in various systems and found numerous applications. Here, we investigate high-order BICs and apply BICs on an integrated photonic platform to high-dimensional optical communication. A four-channel TM mode (de)multiplexer using different orders of BICs on an etchless lithium niobate (LiNbO3) platform where waveguides are constructed by a low-refractive-index material on a high-refractive-index substrate is demonstrated. Low propagation loss of the TM modes in different orders and phase-matching conditions for efficient excitation of the high-order TM modes are simultaneously achieved. A chip consisting of four-channel mode (de)multiplexers was fabricated and measured with data transmission at 40 Gbps/channel. All the channels have insertion loss <4.0 dB and crosstalk <-9.5 dB in a 70-nm wavelength band. Therefore, the demonstrated mode (de)multiplexing and high-dimensional communication on LiNbO3 platform can meet the increasing demand for high capacity in on-chip optical communication.
Keyphrases
  • high throughput
  • high speed
  • electronic health record
  • photodynamic therapy
  • big data
  • deep learning
  • structural basis