Login / Signup

Characterisation and Modelling of an Artificial Lens Capsule Mimicking Accommodation of Human Eyes.

Huidong WeiJames Stuart WolffsohnOtavio Gomes de OliveiraLeon N Davies
Published in: Polymers (2021)
A synthetic material of silicone rubber was used to construct an artificial lens capsule (ALC) in order to replicate the biomechanical behaviour of human lens capsule. The silicone rubber was characterised by monotonic and cyclic mechanical tests to reveal its hyper-elastic behaviour under uniaxial tension and simple shear as well as the rate independence. A hyper-elastic constitutive model was calibrated by the testing data and incorporated into finite element analysis (FEA). An experimental setup to simulate eye focusing (accommodation) of ALC was performed to validate the FEA model by evaluating the shape change and reaction force. The characterisation and modelling approach provided an insight into the intrinsic behaviour of materials, addressing the inflating pressure and effective stretch of ALC under the focusing process. The proposed methodology offers a virtual testing environment mimicking human capsules for the variability of dimension and stiffness, which will facilitate the verification of new ophthalmic prototype such as accommodating intraocular lenses (AIOLs).
Keyphrases
  • endothelial cells
  • cataract surgery
  • induced pluripotent stem cells
  • finite element analysis
  • machine learning
  • electronic health record
  • deep learning
  • data analysis