Login / Signup

Observation of a massive phason in a charge-density-wave insulator.

Soyeun KimYinchuan LvXiao-Qi SunChengxi ZhaoNina BielinskiAzel MurzabekovaKejian QuRyan A DuncanQuynh L D NguyenMariano TrigoDaniel P ShoemakerBarry BradlynFahad Mahmood
Published in: Nature materials (2023)
The lowest-lying fundamental excitation of an incommensurate charge-density-wave material is believed to be a massless phason-a collective modulation of the phase of the charge-density-wave order parameter. However, long-range Coulomb interactions should push the phason energy up to the plasma energy of the charge-density-wave condensate, resulting in a massive phason and fully gapped spectrum 1 . Using time-domain terahertz emission spectroscopy, we investigate this issue in (TaSe 4 ) 2 I, a quasi-one-dimensional charge-density-wave insulator. On transient photoexcitation at low temperatures, we find the material strikingly emits coherent, narrowband terahertz radiation. The frequency, polarization and temperature dependences of the emitted radiation imply the existence of a phason that acquires mass by coupling to long-range Coulomb interactions. Our observations underscore the role of long-range interactions in determining the nature of collective excitations in materials with modulated charge or spin order.
Keyphrases
  • solar cells
  • electron transfer