Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum.
Shuhei HashiroHisashi YasuedaPublished in: Bioscience, biotechnology, and biochemistry (2018)
Cryptic plasmid pHM1519 is a rolling-circular replication mode plasmid of the pCG1 plasmid family in coryneform bacteria. The derived shuttle vector pPK4 is maintained at about 40-50 copies per chromosome in Corynebacterium glutamicum 2256 (ATCC 13869). We found that a mutation (designated copA1) within the repA gene encoding essential initiator protein RepA of the pHM1519-replicon increased the copy number of the mutant plasmid to about 800 copies per chromosome. The mutation was a single G to A base transition, which changed Gly to Glu at position 429 of the amino acid sequence of RepA. In silico secondary structure prediction of RepA suggested that Gly429 is situated in a disordered region in a helix-turn-helix motif, which is a typical DNA-binding domain. This study shows the first example of a high copy number of a C. glutamicum cryptic plasmid caused by an altered replication initiator protein.