The glomerular network of the zebrafish olfactory bulb.
Oliver BraubachRoger P CrollPublished in: Cell and tissue research (2021)
Each zebrafish olfactory bulb contains ~ 140 glomeruli that are distinguishable based on size, location, neurochemistry and function. Here we examine the mitral cell innervation of differently sized glomeruli in adult zebrafish. Type 1 glomeruli had diameters of 80.9 ± 8.1 μm and were innervated by 5.9 ± 0.9 mitral cells. The Type 1 mediodorsal glomeruli (mdG) were innervated by both uniglomerular (innervating only single glomeruli) and multiglomerular mitral cells (innervating two or more glomeruli). In contrast, the Type 1 ventroposterior (vpG) and lateral glomeruli (lG) were only innervated by uniglomerular mitral cells. Type 2 ventral glomeruli were 46 ± 5.1 μm in diameter and were innervated by 3.3 ± 0.2 mitral cells. Type 2 ventromedial glomeruli (vmG) were innervated exclusively by uniglomerular mitral cells. Type 3 glomeruli had diameters of 17 ± 2.5 μm and were innervated by 1.1 ± 0.6 multiglomerular mitral cells each. Finally, Type 4 glomeruli were small, with average diameters of 4.8 ± 3.9 μm and were restricted to the lateral plexus. These glomeruli were innervated mainly by multiglomerular mitral cells with extensively branching dendrites. This study provides the first specific associations between uni- and multiglomerular mitral cells with known zebrafish glomeruli. Our results suggest that glomeruli are distinguishable based on their postsynaptic compartment and that distinct input-output computations occur in different types of zebrafish glomeruli.
Keyphrases
- induced apoptosis
- mitral valve
- cell cycle arrest
- left ventricular
- endoplasmic reticulum stress
- cell death
- heart failure
- signaling pathway
- magnetic resonance
- stem cells
- multidrug resistant
- cell proliferation
- magnetic resonance imaging
- computed tomography
- coronary artery disease
- endothelial cells
- young adults
- deep brain stimulation
- cell therapy
- aortic valve
- contrast enhanced