Login / Signup

Nonequilibrium Scattering/Evaporation Dynamics at the Gas-Liquid Interface: Wetted Wheels, Self-Assembled Monolayers, and Liquid Microjets.

David J NesbittAlex M ZolotJoseph R RoscioliMikhail Ryazanov
Published in: Accounts of chemical research (2023)
ConspectusWe often teach or are taught in our freshman courses that there are three phases of matter─gas, liquid and solid─where the ordering reflects increasing complexity and strength of interaction between the molecular constituents. But arguably there is also a fascinating additional "phase" of matter associated with the microscopically thin interface (<10 molecules thick) between the gas and liquid, which is still poorly understood and yet plays a crucial role in fields ranging from chemistry of the marine boundary layer and atmospheric chemistry of aerosols to the passage of O 2 and CO 2 through alveolar sacs in our lungs. The work in this Account provides insights into three challenging new directions for the field, each embracing a rovibronically quantum-state-resolved perspective. Specifically, we exploit the powerful tools of chemical physics and laser spectroscopy to pose two fundamental questions. (i) At the microscopic level, do molecules in all internal quantum-states (e.g., vibrational, rotational, electronic) colliding with the interface "stick" with unit probability? (ii) Can reactive, scattering, and/or evaporating molecules at the gas-liquid interface avoid collisions with other species and thereby be observed in a truly "nascent" collision-free distribution of internal degrees of freedom? To help address these questions, we present studies in three different areas: (i) reactive scattering dynamics of F atoms with wetted-wheel gas-liquid interfaces, (ii) inelastic scattering of HCl from self-assembled monolayers (SAMs) via resonance-enhanced photoionization (REMPI)/velocity map imaging (VMI) methods, and (iii) quantum-state-resolved evaporation dynamics of NO at the gas-water interface. As a recurring theme, we find that molecular projectiles reactively, inelastically, or evaporatively scatter from the gas-liquid interface into internal quantum-state distributions substantially out of equilibrium with respect to the bulk liquid temperatures ( T S ). By detailed balance considerations, the data unambiguously indicate that even simple molecules exhibit rovibronic state dependences to how they "stick" to and eventually solvate into the gas-liquid interface. Such results serve to underscore the importance of quantum mechanics and nonequilibrium thermodynamics in energy transfer and chemical reactions at the gas-liquid interface. This nonequilibrium behavior may well make this rapidly emergent field of chemical dynamics at gas-liquid interfaces more complicated but even more interesting targets for further experimental/theoretical exploration.
Keyphrases
  • ionic liquid
  • room temperature
  • energy transfer
  • carbon dioxide
  • monte carlo
  • molecular dynamics simulations
  • single molecule
  • mass spectrometry
  • particulate matter
  • deep learning