Login / Signup

Drop Weight Impact Test on Prepacked Aggregate Fibrous Concrete-An Experimental Study.

Gunasekaran MuraliSallal Rashid AbidMugahed AmranNikolay Ivanovich VatinRoman Fediuk
Published in: Materials (Basel, Switzerland) (2022)
In recent years, prepacked aggregate fibrous concrete (PAFC) is a new composite that has earned immense popularity and attracted researchers globally. The preparation procedure consists of two steps: the coarse aggregate is initially piled into a mold to create a natural skeleton and then filled with flowable grout. In this instance, the skeleton was completely filled with grout and bonded into an integrated body due to cement hydration, yielding a solid concrete material. In this research, experimental tests were performed to introduce five simple alterations to the ACI 544 drop weight impact test setup, intending to decrease result dispersion. The first alteration was replacing the steel ball with a steel bar to apply a line impact instead of a single point impact. The second and third introduced line and cross notched specimens at the specimen's top surface and the load applied through a steel plate of cross knife-like or line load types. These modifications distributed impact load over a broader area and decrease dispersion of results. The fourth and fifth were bedding with sand and coarse aggregate as an alternate to the solid base plate. One-hundred-and-eight cylindrical specimens were prepared and tested in 12 groups to evaluate the suggested alteration methods. Steel and polypropylene fibers were utilized with a dosage of 2.4% to produce PAFC. The findings indicated that the line notched specimens and sand bedding significantly decreased the coefficient of variation (COV) of the test results suggesting some alterations. Using a cross-line notched specimen and line of impact with coarse bedding also effectively reduced COV for all mixtures.
Keyphrases
  • molecular dynamics
  • body mass index
  • sars cov
  • physical activity
  • molecular dynamics simulations
  • magnetic resonance
  • minimally invasive
  • coronavirus disease
  • ionic liquid
  • diffusion weighted imaging