Login / Signup

Dysregulated dynamic time-varying triple-network segregation in children with autism spectrum disorder.

Xiaonan GuoYabo CaoJunfeng LiuXia ZhangGuangjin ZhaiHeng ChenLe Gao
Published in: Cerebral cortex (New York, N.Y. : 1991) (2023)
One of the remarkable characteristics of autism spectrum disorder (ASD) is the dysregulation of functional connectivity of the triple-network, which includes the salience network (SN), default mode network (DMN), and central executive network (CEN). However, there is little known about the segregation of the triple-network dynamics in ASD. This study used resting-state functional magnetic resonance imaging data including 105 ASD and 102 demographically-matched typical developing control (TC) children. We compared the dynamic time-varying triple-network segregation and triple-network functional connectivity states between ASD and TC groups, and examined the relationship between dynamic triple-network segregation alterations and clinical symptoms of ASD. The average dynamic network segregation value of the DMN with SN and the DMN with CEN in ASD was lower but the coefficient of variation (CV) of dynamic network segregation of the DMN with CEN was higher in ASD. Furthermore, partially reduced triple-network segregation associated with the DMN was found in connectivity states analysis of ASD. These abnormal average values and CV of dynamic network segregation predicted social communication deficits and restricted and repetitive behaviors in ASD. Our findings indicate abnormal dynamic time-varying triple-network segregation of ASD and highlight the crucial role of the triple-network in the neural mechanisms underlying ASD.
Keyphrases