Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods.
Stener LieAnnalisa BrunoLydia Helena WongLioz EtgarPublished in: ACS applied materials & interfaces (2022)
Semitransparent hybrid perovskites open up applications in windows and building-integrated photovoltaics. One way to achieve semitransparency is by thinning the perovskite film, which has several benefits such as cost efficiency and reduction of lead. However, this will result in a reduced light absorbance; therefore, to compromise this loss, it is possible to incorporate plasmonic metal nanostructures, which can trap incident light and locally amplify the electromagnetic field around the resonance peaks. Here, Au nanorods (NRs), which are not detrimental for the perovskite and whose resonance peak overlaps with the perovskite band gap, are deposited on top of a thin (∼200 nm) semitransparent perovskite film. These semitransparent perovskite solar cells with 27% average visible transparency show enhancement in the open-circuit voltage ( V oc ) and fill factor, demonstrating 13.7% efficiency (improved by ∼6% compared to reference cells). Space-charge limited current, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses shed more light on the trap density, nonradiative recombination, and defect density in these Au NR post-treated semitransparent perovskite solar cells. Furthermore, Au NR implementation enhances the stability of the solar cell under ambient conditions. These findings show the ability to compensate for the light harvesting of semitransparent perovskites using the plasmonic effect.
Keyphrases
- solar cells
- perovskite solar cells
- reduced graphene oxide
- energy transfer
- gold nanoparticles
- sensitive detection
- single molecule
- visible light
- quantum dots
- minimally invasive
- induced apoptosis
- label free
- single cell
- room temperature
- healthcare
- ionic liquid
- magnetic resonance
- high resolution
- high frequency
- stem cells
- computed tomography
- photodynamic therapy
- dna repair
- signaling pathway
- type diabetes