Login / Signup

Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC).

Amr Al ShebelGeert MichelTilman BreiderhoffDominik Müller
Published in: International journal of molecular sciences (2024)
Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.
Keyphrases
  • mouse model
  • high fat diet induced
  • ionic liquid
  • metabolic syndrome
  • adipose tissue