Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design.
Cheng ChenLiangdong ZhuMikhail S BaranovLongteng TangNadezhda S BaleevaAlexander Yu SmirnovIlia V YampolskyKyril M SolntsevChong FangPublished in: The journal of physical chemistry. B (2019)
Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core ( p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with p Ka* values of -5.0 and -5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as "donor") and distal (often as "acceptor") ring moieties of the dissociative hydroxyl group to lower the ground-state p Ka and increase the Δp Ka, respectively.